Jordan left (?,?) -derivations Of ?-prime rings
نویسندگان
چکیده
منابع مشابه
On Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملTwo Torsion Free Prime Gamma Rings With Jordan Left Derivations
Let M be a 2-torsion free prime Γ-ring and X a nonzero faithful and prime ΓM -module. Then the existence of a nonzero Jordan left derivation d : M → X satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that d : M → M is a derivation along with some suitable assumptions. AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15
متن کاملCentralizing automorphisms and Jordan left derivations on σ-prime rings
Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...
متن کاملLeft Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملon jordan left derivations and generalized jordan left derivations of matrix rings
abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n 1, then any jordan left derivation on the ring tn(r) of all n×n up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Baghdad Science Journal
سال: 2011
ISSN: 2411-7986,2078-8665
DOI: 10.21123/bsj.8.3.826-831